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Introduction 

The article presents the definition of the title issue, formalizes it and presents the selection 

and characteristics of the practically existing algorithms that provide the solution to the 

problem.  It also analyzes the expressiveness of the means to express the preferences and 

restraints concerning the assignment participants.  

The issue discussed here is well known practically; however, it has not been the subject 

of scientific definitions although it resembles Glover-Klingman production and distribution 

issues [1]. The article discusses the issue of Separate Group Assignment (SGA) with the 

consideration of constraints related to the numerousness of the groups and the preferences and 

restraints of the participants. It will also present the issue of multidimensional SGA, e.g. the 

assignment considering varied participant responsibilities within one schedule and with the 

exclusion of overlapping periods. 

  

 

1. Definition of the canonical SGA problem (Separate Groups Assignment ) 

Determination of the distribution by n+1 subsets Pi  for a given finite set of participants 

{𝑢𝑖} ∈ 𝑃 at given constraints as regards the number of subsets. 

|𝑃| = 𝑚;   𝑃 = ⋃ 𝑃𝑖

𝑖=1..𝑛

∪ 𝑃0;   𝑃𝑖 ∩ 𝑃𝑗 = ∅  𝑓𝑜𝑟 𝑖 ≠ 𝑗 ;  |𝑃𝑖| ≤ 𝑞𝑖  𝑓𝑜𝑟 𝑖 = 1. . 𝑛 

The distribution is to consider constraints (exclusions) regarding the possibilities to assign 

participants to particular subsets given by binary exclusion matrix {𝑢𝑖} ∈ 𝑃 and to maximize 

the sum of participant preferences given by matrix w[n;m]. 

∑ 𝑤(𝑖, 𝑗)

𝑖

→ 𝑚𝑎𝑥;   𝑖 = 1. . 𝑛 ^ 𝑢𝑖 ∈ 𝑃𝑗  ^ 𝑒𝑥𝑐𝑙(𝑖, 𝑗) = 1 

With the assumption of the finiteness of the sets, it can be assumed without the loss of 

generalizability that: 
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• Preference matrix w(i,j) is non-negative: all values of w(i,j) can be always increased 

by a constant value without the change of the position of maximum value; 

• The terms maximization and minimization of the preference function can be used 

interchangeably: the maximization of the sum of distinguished elements w(i,j)  is 

equivalent to the minimization of the sum of elements �̅�(𝑖, 𝑗) = 𝑤𝑚𝑎𝑥 − 𝑤(𝑖, 𝑗) 

Finally, set P0, which is hardly visible, should be mentioned. It is not restricted as regards 

its numerousness and it lacks the assignment of elements excl()  and  w(). This is a container 

for participants that cannot be assigned (or we are not capable of doing it ☺) to any other subset 

Pi  at given conditions. 

Moreover, it should be emphasized that it is acceptable that any of the named subsets of 

the distribution that constitutes the solution may remain empty. 

 

 

2. Formalization of flow network 

In the Glover-Klingman problem [1], which was mentioned in the introduction to the 

article, a flow network model was applied i.e. a directed graph G(V,E,q), a unigraph with edge 

weights expressing flow capacity, with a distinguished pair of vertexes: source X and outflow 

Y. The well-known MaxFlow algorithms make it possible to determine flow function fopt(i,j)  

which provides the optimal flow value for each network edge 𝑒𝑖𝑗. The values do not exceed the 

flow capacity of the edge, they maintain a zero balance of the flows in all indirect nodes and 

maximize total flow F from X to Y. 𝐹 ≝ ∑ 𝑓(𝑖, 𝑌) = − ∑ 𝑓(𝑋, 𝑖)𝑖𝑖  

 

If cost function 𝑤(𝑒) is given on flow network edges G(V,E,q), the issue of the cost 

minimization of  maximum flow MinCostMaxFlow can be presented. 

The SGA problem can be described by the following flow network (Fig.1) 

Directed graph G (V ,E, w, q) is given , where: 

V – set of vertices   vi , 

E – set of edges  eij ,  

w : E → ℝ≥0  cost function given on edges,  

q : E → ℝ≥0 flow function on edges h, 

X , Y – distinguished pair of vertices, sources and outflow, respectively.  

 

Function f : E → ℝ≥0 is referred to as flow which the following conditions:  

1). 0 ≤ 𝑓(𝑒) ≤ 𝑞(𝑒), ∀ 𝑒 ∈ 𝑬  -  edge-flow constraints  
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2). ∑ 𝑓(𝑒𝑖,𝑗) +𝑒𝑖,𝑗
∑ 𝑓(𝑒𝑗,𝑖)𝑒𝑗,𝑖

 = 0 , ∀ 𝑣𝑗 ∈ 𝑽\{𝑋, 𝑌} – condition for zero balance of flow 

in indirect nodes . 

 

 

 

 

If the total cost is the value of  ∑ 𝑤(𝑒)𝑒∈𝐸 𝑓(𝑒) = 𝑄(𝑓), then the issue of optimization 

will be expressed by the determination of the maximum flow that minimizes cost Q(f) :   𝑄(𝑓) →

𝑚𝑖𝑛 .  

Among the well-known algorithm for the MinCostMaxFlow problem, the successive 

shortest path algorithm, Buxacker-Goven [2] is the easiest to explain. It applies the notion of 

residual flow network Gres.  This is a construct that describes the capability to manage the 

network (flow change area) with the existing non-zero flow f . For a given flow network G with 

a non-zero flow f, the residual network Gres  is the network in which every edge eij  with flow 

q(e),  cost w(e)  and flow f(e) >0  is replaced by a pair of oppositely directed edges where eij’ 

retains the remaining flow capacity r(e’)=q(e)-f(e) and  cost  w(e’)=w(e), while the opposite eji  

has flow capacity r(eji)=f(e),  and cost  -w(e), as presented in Fig.2. 

  

vm+1                  vm+2                       vm+j                                    vm+n              classes 

w1,1 /1            w2,2 /1                         wi,j /1                              wm,n/1           preferences 

X                                             source  

v1                    v2                            vi                               vm                      participants  

0/1                      0/1       0/1           0/1 

0/q1              0/q2                 0/qi              0/qn                                   capacity 

Y                                            sink 

Fig.1. Diagram of flow network for SGA 
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The successive shortest path algorithm [2] is as follows: 

 

∂=1; Gres=G 

while ∂>0 repeat: 

{ ∂=0; 

} 

 

• Find the cheapest connections  d(j) from node X to the other nodes of residual network 

Gres (the current one)  with the use of, e.g. Dijkstra algorithm: 

• for (𝑒𝑖𝑗 ∈ 𝐸)  𝑤𝑒
′ = 𝑤𝑒 − (𝑑(𝑗) − 𝑑(𝑖)); 

• If there is  P – the cheapest path from X to Y in Gres; 

• 𝜕 = 𝑚𝑖𝑛{𝑟𝑖𝑗: (𝑖, 𝑗 ) ∈ 𝑃};  

• increase  flows on path P by  ∂  ; 

• update network  Gres ; 

} 

 

The solution is represented by final flow F given by a set of edges with negative costs of 

final residual graph Gres . 

 

Finally, let’s consider an insignificant, nontrivial example [7], which will illustrate threats 

that may be faced by an inaccurate algorithm. There are10 applicants for classes organized in 

two groups with 3 places in every group. A competency test was conducted and declarations 

were collected regarding the preferences for the participation in particular groups. The matrix 

of data is given below. The solution has been distinguished. The algorithm, which initially will 

assign applicant 2 to group I, must have the option to change the assignment. Otherwise, 

applicant 9 with a much lower rank, will be accepted instead of candidate 5. 

vi        w(e)/q(e)        vj 

eij      f(e) 

       w(e)/q(e) –f(e)  

vi                                 vj 

      -w(e)/f(e) 

Fig. 1  
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Fig. 2. Illustration of the problem solved. 

Rank 10 9 9 8 8 7 7 5 4 3 

I term 1 1 0 1 1 1 1 1 0 1 

II term 0 1 1 0 0 0 0 1 1 1 

 

 

3. Application range of the flow network model in SGA 

 

The accepted algorithm ensures a maximum flow, i.e. the highest number of participants 

assigned to the groups. It allows for the possibility to leave a participant without the assignment 

and to leave an empty place in the group. There are no constraints in the number of participants 

with regard to the number of places in the groups. Moreover, the set of exclusions does not have 

practically any restrictions. However, the preferences and the information whether to maximize 

or minimize their sum should be given by numerical matrix W[m,n]. 

As a result, it is possible to assign applicants by their grades or ranks (see Fig.2), and to 

express their preferences by ranking their choices, by distributing between them a fixed number 

of weights or assigning to them any limited values. In the latter case, the participant – by giving 

more weights  - increases his/her chances for assignment. This property of the 

MinCostMaxFlow algorithm – i.e. the availability of various weights to express preferences - 

will be used to solve multidimensional SGA.  

 

 

3. Multidimensional SGA 

By Multidimensional SGA (MSGA) the author understands a simultaneous determination 

of solutions for several fixed SGAs with the possibility of mutual exclusion of some groups 

from different SGAs. This requires the adjustment of several SGAs to avoid collisions. 

In such cases, it is a common practice to assign a limited number of weights to every 

participant to express his/her preferences in all choices made, including all SGAs. 

Let’s take a set of several SGAs 𝑀𝑆𝐺𝐴 = {𝑆𝐺𝐴𝑖} , 𝑖 = 1. . 𝑡   and determine the conflict 

area of the groups (regarding time periods).  To be distinguished, the objects of particular SGAi  

will be additionally denoted by a superscript. Thus, the conflict area  𝑍𝑐𝑛𝑓 = {𝑃𝑢
𝑖 , 𝑃𝑣

𝑗
} ∧ 𝑖 ≠ 𝑗  

is a set of distinguished pairs of named subsets from different distributions (SGA problems). 

Let’s assume a set of the solutions to subproblems MSGA. 𝑀𝐴𝑆𝐺�̂� = {𝑆𝐺�̂�𝑖}  𝑖 = 1. . 𝑡  

. The set will be contradictory (unacceptable) as long as there is participant pk 
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∃(𝑝𝑘 , 𝑃𝑢
𝑖 ,̂  𝑃𝑣

𝑗
)̂ ∶  𝑝𝑘 ∈ 𝑃𝑢

𝑖  ̂  ∧ 𝑝𝑘 ∈ 𝑃𝑣
𝑗
  ̂  ∧ {𝑃𝑢

𝑖, 𝑃𝑣
𝑗
  } ∈ 𝑍𝑐𝑛𝑓 

The search for the acceptable solution of problem MSGA consists in: 

• the modification of the preference function of the participant that is in collision 

(conducted by the system); 

• the modification by the matrix system of the participant’s exclusions through the 

addition of exclusions that eliminate collisions. 

The search for the solution can be conducted with the application of the evolutionary 

optimization algorithm that is described by Dyduch [3], [4]. The algorithm consists in a random, 

based on the evolution of species, search for some elements (parameters) of the solution and 

assumes the application of a local optimization algorithm to determine the remaining elements 

that constitute a complete solution to the problem. 

 

 

5. Evolutionary Optimization Algorithm EO 

 

The EO algorithm, which is described below by a Data Flow Diagram DFD (Fig.1) is a 

two-level iterative procedure that applies an optimization procedure on the lower level. It may 

be the simplex algorithm [6], flow network optimization or many other [5]. In Fig.4 they are 

represented by module 2.OPT. The rest of the diagram describes the evolution algorithm of the 

upper level. The algorithm searches randomly the values of variable elements (parameters) for 

which the optimization algorithm of lower level can determine the rest of the optimal solution. 

The subset of variables that is searched randomly is referred to as genotype. Variables whose 

values are determined by lower-level algorithm are referred to as phenotype. The evolution 

process consists in the introduction of changes (mutations) that are selected randomly into the 

genotype, with suitably defined probability distributions.  

It is crucial that local minimums should be avoided (setbacks in the optimum search). 

Thus, a sufficiently diversified parental population is maintained and crossover is applied as a 

substantial change of genotype, while in smaller systems the selection of the initial genotype is 

recurred repeatedly.  

It is also significant that the areas once searched are not searched again. Here the taboo 

search is applied which requires the saving of the list of solutions that have been checked.  

The following notions that are necessary to understand EO algorithm should be defined. 
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Let ui, vi  denote the values of vectors u, v determined in the ith  iteration of computations. 

Vector ui is determined on the upper level, while vector vi on the lower one. Pair (ui, vi)  is 

referred to as subject i . 

Genotype is vector ui  - temporary point in the optimization subspace that is determined  

on the EO upper level with the application of the random steering method by the evolution 

algorithm. 

Phenotype is vector vi  - temporary point in the optimization subspace that is determined  

by the EO lower level deterministic evolution algorithm. 

For a defined value of genotype ui , the task to optimize the lower level can be given as 

follows. Determine v i so that 

𝑄𝑖 = 𝑓(𝑢𝑖, 𝑣𝑖) = 𝑚𝑖𝑛𝑣∈𝑉(𝑢𝑖)𝑓(𝑢𝑖, 𝑣) 

where Qi  is the value of the quality criterion for subject (ui, vi). 

The solution of the EO problem in the form of (sub)optimal point is obtained in the 

iterative procedure: 

𝑓(�̂�, 𝑣) = 𝑚𝑖𝑛(𝑢,𝑣)∈𝑈×𝑉𝑓(𝑢, 𝑣) = 𝑙𝑖𝑚𝑖→∞ (𝑚𝑖𝑛𝑣∈𝑉(𝑢𝑖)𝑓(𝑢𝑖, 𝑣)) 

where 𝑢𝑖 = 𝑟𝑛𝑑(𝑢𝑖−1, 𝑢𝑖−2, … ) and rnd() is a random function whose probability 

distributions are subject to changes in subsequent iterations.  

 

The EO algorithm is described in  Data Flow Diagram DFD in Fig.4. It includes six main 

subprocesses and data storage ST. Continuous lines represent the transfer of objects and 

steering, while dashed lines represent steering.  

The INI process generates initial points of evolutionary searches. There may be one or 

more genotypes, depending on the defined numerousness of the initial population. In the case 

of multimodal optimization, where local minimums occur, the INI process enables the 

generation of varied initial points.   

The OPT process has two objectives. First, it solves the task of the lower-level 

optimization, i.e. it determines the values of vector  vi  and quality function Qi . Secondly, in 

the course of this process, by means of the postoptimal analysis auxiliary data wi are determined. 

They are used in the modification of probability distributions during the MM process. 

The GEN process generates new genotypes. It selects randomly the subject to be modified 

(a parent) from the current population stored in ST as well as the way of modification. Module 

MM provides the probability distributions that are applied by GEN. The generated subject is 
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compared with the previously known ones that are stored in ST in order to avoid repetition (a 

taboo search). 

The STP process checks the conditions for procedure stop. They include: the completion 

of the assumed computations from various initial points, the assumed number of iterations, the 

assumed number of iterations without any result improvement and other. When the stop 

conditions are not met, the computation process (steering) is transferred to module PM. 

The MM process modifies the parameters of probability distributions that are applied in 

the GEN module to generate new genotypes. The modification of the parameters consists in the 

analysis of the so-far course of the iteration process and the accepted search strategy; it may 

also consider the results of the postoptimal analysis which provides the impact assessment of 

genotype variables on quality index Q(u,v) in point  (ui,vi).    𝑤𝑖 ≅ δQ⁄δui . 

 

The PM process manages the number and quality of subjects that are stored in ST as a 

current population, in accordance to the accepted strategy. It also manages the list of the last 

subjects in ST,which is necessary in the taboo search. The principle is as follows: a new subject 

whose quality is better than that of the worst one in the population, can replace it on the 

condition that the population does not lose its variability. Moreover, if the quality index of the 

new subject is better than the index of the so far best one, the best known solution is 

consequently improved. 
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Fig 3. Data Flow Diagram of the Evolutionary Optimization Algorithm. 
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4. Application of EO algorithm to the MSGA problem 

Let’s denote optimal solutions for every separate problem by  𝑆𝐺�̂�𝑖 ≝ (𝑄𝑖, 𝐹𝑖, 𝑓𝑖̂ ). The 

quality criterion of the MASG problem will be given by 

∑ 𝑄𝑖

𝑖=1..𝑡
(𝑚𝑎𝑥 ∑ 𝐹𝑖

𝑖=1..𝑡
) → 𝑚𝑎𝑥 

We are looking for a maximum sum of participants’ preferences in all SGAi  assignments 

when the condition of the maximization of the sum of all assigned places is met and -as defined 

in Chapter 5 - the principle of non-contradiction is applied. In this case, the use of the EO 

algorithm is as follows.  

Phenotype, which is optimized by the MinCostMaxFlow algorithm, is a set of 

distributions given by functions {𝑓𝑖}; 

Genotype is a set of participant exclusion matrices in all SGAs. 

The OPT algorithm here: the MinCostMaxFlow is applied to particular SGAi  whose order 

is selected randomly. After defining the 𝑆𝐺�̂�𝑖solution, for every case of the participant 

assignment to a subset that belongs to a pair of the conflict subsets 

𝑝𝑘 ∈ 𝑃𝑢
�̂� ∧ {𝑃𝑢

𝑖, 𝑃𝑣
𝑗
} ∈ 𝑍𝑐𝑛𝑓 

the exclusion matrix is modified in problem SPAj with the exclusion of 𝑝𝑘 ∈ 𝑃𝑣
𝑗
  and then 

consecutive SGAs are solved. 

 

The GEN algorithm introduces changes to the part of the genotype that is responsible for 

conflicts. For each pair {𝑃𝑢
𝑖, 𝑃𝑣

𝑗
} ∈ 𝑍𝑐𝑛𝑓  and every participant 𝑝𝑘  whose exclusion function 

does not eliminate a simultaneous assignment to both subsets, the GEN algorithm may change 

bits (1,1)  to  (1,0)  or  (0,1) . 

The STP algorithm  is completed by testing  the fulfilment of the condition of maximum 

assignment number. The value of 𝐹𝑙𝑖𝑚 = ∑ �̂�𝑖
𝑖=1..𝑡  for �̂�𝑖 calculated for independently 

optimized SGAs constitutes a correct assessment of the maximum sum of the places assigned. 

 

 

Conclusion 

The aim of the article was to develop and implement creatively the accepted algorithms 

as well as to explain their implementative features and define their new application area, i.e. 

the multidimensional problem of the assignment to separate groups. The author hopes the article 

will inspire both operational researchers and software designers dealing with particular 

problems. 
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Abstract 

The article discusses the definition and formalization of the multidimensional problem of 

the assignment of participants to separate groups and presents the selection and characteristics 

of practically available algorithms that provide the solution to the problem. It also analyses the 

expressiveness of the means to present the preferences and constraints of the assignment 

participants.  
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